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Deterministic Approach to Full-Wave
Analysis of Discontinuities in MIC’S

Using the Method of Lines

ZHAOQING CHEN AND BAOXIN GAO

Abstract — A deterministic approach to the full-wave analysis of disconti-

nuities in MIC’S using the method of lines is described. Arbitrarily shaped

one-port and in-line two-port discortthruities in any qnasi-planar configura-

tions can be analyzed by this “one step” method. Using the hybrid
homogeneous boundary conditions, this approach simplifies the cafcrdation,

with ~ and @ being discretized only in and near the dkcontinnrity

regions. Ilhrstrative examples of S-parameter calculation are given. Com-

puted results are compared with measnred data and with the published

results of other authors.

I. INTRODUCTION

A CCURATE computation of the frequency-depen-

dent properties of the discontinuities in MIC’S (Fig.

1) is important for extending the applicability of existing

CAD tools to higher microwave frequencies and millime-

ter-wave frequencies.

At higher operating frequencies full-wave analysis is

more accurate than quasi-static analysis. Due to the com-

plexity of the problem, a rigorous numerical 3-D full-wave

approach has not yet been elaborated. In recent years,

some full-wave analyses of the discontinuities in MIC’s/

MMIC’S have been published [1]–[18]. A unified user-

oriented full-wave computation method for the analysis of

arbitrarily shaped discontinuities in any quasi-planar con-

figuration is an attractive subject.

The method of lines [19]–[25] is more flexible than other

methods. It avoids the choice of basis functions and the

relative convergence problem. It provides a simple means

for dealing with complex structures and was applied to

discontinuity problems by Worm et al. [21], [23], [24].

However, for nonperiodic discontinuity problems, if only

the Dirichlet and the Neumann homogeneous boundary

conditions are applied, +’ and @ must be discretized in

both the discontinuity region and the connected open/

short ended transmission line sections. The maximum of

the electrical length of the transmission line sections is n,

so the number of discretization lines is very large.

Recently, the authors [26] presented an eigenvalue ap-

proach using the method of lines to discontinuity problems

in quasi-planar configurations by introducing the hybrid
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Fig. 1. Discontinuity in MIC shielded structure

homogeneous boundary conditions. The approach requires

that $’ and #h be discretized only in and near the discon-

tinuity regions, so it markedly reduces the computation

effort.

In this paper, we present a deterministic full-wave ap-

proach to the problem for the case of shielded structures.

The deterministic approach avoids solving the eigenvalue

equation, which requires many computation steps to find

the root. It is a “one-step” solution and is more suitable

for practical applications than the eigenvalue approach.

II. ANALYSIS

The method of lines combines the advantages of the

analytic and the discrete methods. The principles underly-

ing this method have been described by Worm et al.

[19] -[24]. The electromagnetic field in each layer of the

dielectric is described by two scalar potential functions *’

and #h:

E=v xv x(+ ’2)/( jc!X)-y7 x(+’;) (1)

17=v X(+w)+v xv x(@)/(j&rp). (2)

The functions ~’ and $h are discretized in the x and the

z direction shown in Fig. 1 with nonequidistant mesh

width hX, (i =1,2,.. ., NhX), eXi (i =1,2,. “ “, N,X), k,,

(i=l,2,... ,N~z), e=i (~=ljZ”””, N,=); then they will be

denoted by the matrices [+’] and [ +k], respectively. The

transformation of matrix notation into vector notation can
be expressed as follows:

[A][X][B] + [B] T8[A]I (3)
—

where X = [xll, Xzl, . . ., x~l, Xlz, X22, . . ., x~z, X13, Xzq
. . .> , xn~]~; 8 denotes the Kronecker product [24]; and
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— I“exp(-jpz)

— l-exp(jpz) T,

I 17.w.

Fig. 2. Discretization of ~ and #h for one-port discontinuity + ~

lines,. $~ lines.

[A], [B], and [X] are M X M, N x N, and M x N matri-

ces, respectively.

Fig. 2 shows the discretization of ~e and qbh lines in

one-port discontinuity (open end) structure. It is assumed

that only one propagation mode exists in the transmission

line connected to port 1 and that the plane ?’l is so far

from the discontinuity region that the higher order modes

excited by the discontinuity will vanish at T1.

We take the incident wave as the impressed wave, de-

noted by ~~”, and the reflected wave as the excited wave,

denoted by +>’. According to transmission line theory,

near the plane T1 +:, ~ can be expressed as

+Y,E=c~,~(X,y)eTJP1’
(4)

where /11 is the propagation constant of the transmission

line at port 1.

At z = O, ~; and $> satisfy the hybrid homogeneous

boundary conditions:

where A + and A – are complex constants. The derivative

of [~;’] and [ ~~ ~] with respect to z can be transformed to

matrix operation forms:

with

‘D’’E]=[’’;E]MIMJE]JE]
for Fig. 2 with E.W. at T3 (7)

607

or

for Fig. 2 with M.W. at Tz (8)

[’:;El =

1

[-1=[

I, E ‘ezl
rc. o

[Q;E] = [’a]”

d[r):, E] 1

+——

az hz

01
‘h~2

1

(9)

0 ‘hzNh:

0 “1

‘ezNez

l[i$,E][re%’E

‘:, E][D/’E]

[@},E] = [rhx]-’[+!,E][riE

‘1
–1

‘I, E
6?2 1

–1

(lo)

(11)

(12)

(13)

(14)

(15)

The second-order operators [D~~ ~] and [Dj~l’] are

complex symmetric tridiagonal matrices. By means of the

Kronecker product it has been shown that the discretiza-

tion in the x and z directions is independent and that

operator equations for one direction have an obvious anal-

ogy in the other direction. Therefcme, with the exception of

(9), equations (6)-(15) are the same as (5)-(14) in [22] but

are formulated for the z direction.

The transformations of the derivatives of [~;, ~] and

[$;, ~] with respect to the x direction are the same as those
in [22]. By the transformations [V; ~] = [TJ~[@:, ~][T~’]

and [Vi ~] = [ Tl,x]’[ O! ~][ T{; ‘], IHehnholtz equations for

[~~, E] and [!!, ~] can be transferred to uncoupled differen-
tial equations:

(j=l, z,... ,N,X; k=l,2,. ... N~z) (16)

(~=l,z,... ,NhX; k=l,2 . . . , Nhz) (17),’

where [T,: E] denotes the normalized eigenvector matrices
of [ D,:r’ E], [ A\j E] denotes their eigenvalue diagonal matri-

‘1’ ~], [T.x], [X;x], [Thx], and [~lx] areces, and [T:; ‘], [A=,
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defined in a similar way. We employ the subroutines in

EISPACK [30] to compute [T] and [A]. Using the method

proposed by Worm et al. [21], [22] we can obtain

or

[

[Yp]

[rJ”]

for strip structures (18)

for slot structures (19)

and then

‘z’’E]red[f~lstnp=123stnp ’20)

or

The details of deriving (18)-(21) can be found in [19] -[24].

In our approach [8=~1’] = [T;; ‘i][ DZ1’‘][T~j’] are complex

matrices which retain quasi-diagonal properties of the ex-

isting representations [21], [22]. [ ~J ] or [ ~i, ] can be carried

out using only quasi-diagonal matrices. Obviously, the

large matrix storage requirement can be alleviated and the

computation time can be reduced. Sometimes we have to

suitably rearrange the columns of [T:;’] or [T=;’] and the

corresponding [ ~~,~z] in order to get a standard form of

the quasi-diagonal matrix [8z~’‘].

Now we discuss the strip structures shown in Fig. 2. We

split up the strip region into two parts: transmission line

region A and discontinuity region B. The sum of the

number of $’ and @ lines in region A should be larger

than that in region B. By rearranging the rows and the

columns of the matrix [21’ ‘], we obtain

[ 1[-1=1:3’22)
[Z{iE] [Z[jE] .7A’,E

[z:iE] [-z:+E] yBI,E

where

[1

— —

j,4~,E= ‘:r’E jBI, E = ‘2B1” E

~AI,E ~X57,E
1

(23)
x

The superposition of the impressed field and the excited

field must satisfy the tangential condition for the conduc-

tor surface:

~zA%B=~zA,BI+~zA.BE=~ (25)

~A,B~~A,B1+~XA.BE=~
x x

(26)

so we have

Since region A is a transmission line section connected to

port 1, PI and ~[ can be assigned according to the

results of the 2-D analysis [20], [22] of the transmission

line at port 1. In the z direction the factor e-@ should be

taken into account. ~BI and jXBI are determined in such a

way that the electromagnetic field described by ~f> A in

region A remains in the “incident” state, so the equations

~AI = g and ~Ar = ~ must be satisfied. In this way, thez x

equations are obtained as follows:

[2:1] 7A’+ [2[2] ~“= Q

[z:] w+[zg]P’=6

[2;1] Y“J’+ [z;,] .FB’=EB’

[Z:]PE+ [Z:p= -lTB’

and then

~BI= - [Z{,] “[z;l]~AI

PE=([zg] [z:] -l[zg]-[zg]j -

“([zi,l-[zi,][z:, ]-’[z:l]’

p~=-[z:]-’[z:]p’

(28)

(29)

(30)

(31)

(32)

(33)

(34)

where [ ] – 1 denotes the Moore–Penrose generalized in-

verse matrix. The S parameter of the one-port can be

calculated by

,=]

11- = – ~ ~AEex~,(,) (37).
,=1

where NI is the total number of +belines on the conductor

strip at plane Tl, and kl( i ) is the x-direction subscript of
the i th IJe line on the conductor strip at T1.

Fig. 3 shows the discretization of V’ and $h lines for an

in-line two-port discontinuity structure. To calculate Sll

and S21, we consider that there is no incident wave at port

2, so the boundary conditions of port 2 for both impressed

and excited fields are the same, i.e., the reflect types.

Similar to the one-port treatment, the following results are
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Fig. 3. Discretization of ~ and $h for in-line two-port discontinuity.

+ ~ lines, ● @ lines.

obtain ed:

[4’E1=10

[rizl=[%]

reZ2

“ 1

(40)

rezNez

I ““
‘h Z1 o

——
‘hz(Nhz–1)

o’ {V%zNhz
1

(41)

‘D:’’]=[r’;’][-%l’r:’]’42)
Sll can be calculated in a way similar to that of the

one-port discontinuity case. For Szl, we have

F

~ .5 ‘L2
21 I: ZL1

(43)

where Z~l and Z~2 are the characteristic impedances of

transmission lines at port 1 and port 2, respectively, based

on the current –power definition:

N2

K = ~ (Jfl-N2+, )“+ Jj~–N2+J ‘xk,(z) (44)

1=1

where M2 denotes the number of ~’ lines in region B, N2

equals the number of $’ lines on the conductor strip at T2,

and k2 (i) is the x-direction subscript of the +’ line,

which is the i th on the conductor strip at T2.

0.6

-+
8 12

FREQUENCY I N GHz

-—al ~T+

E.W. E.W.

even-mode odd-mode

Fig. 4. Analysis of a finline inductor strip. T= 5.08 mm, W/b= 0.25,
WR(90) waveguide. + + + measured by Knorr et al. [4]; ––– com-

puted by Knorr et al. [4], ————computed by this method.

The equations for the slotline structures are dual to

those of strip structures. We use U instead of 1. The

characteristic impedance ZL is based on the voltage–power

definition.

III. Rl?SUITS

Based on the method described above, we have devel-

oped a computer program for calculating the S parameters

of arbitrarily shaped one-port and in-line two-port discon-

tinuities ,in quasi-planar configurations with three dielec-

tric layers and one conductor strip layer. The computa-

tions were performed on the ELXSI 6400 system. Another

version of the program with smaller array dimensions can

be run on the IBM PC/AT.

Since we assumed that only one propagation mode exists

at T1 shown in Fig. 2 and at Tl, T2 shown in Fig. 3, the

locations of the above-mentioned planes ~ should be far

enough from the discontinuity y. By applying principles for

the nonequidistant discretization [22], we can achieve this

condition without using an extremely large number of

discretization lines.

A finline inductive strip is analyzed by the even- and the

odd-mode method (Fig. 4). Our results are closer to the

measured results by Knorr et al. [4].
An example of a more complex structure is shown in

Figs. 5 and 6. It contains a branch line coupler. Four

branch lines are located close to each other. As Jansen [7]

pointed out, parasitic coupling and spurious parameters

are so strong that the usefulness of a decomposition to

four T junctions and four transmission line sections is
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Fig. 5. A two-port network containing a branch line coupler. H = 0.75
mm, c, = 2.86, a = 2.24 mm, b = 0.81 mm, c = 0.47 mm, d = 0.84 mm,

e = 0.53 mm, g = 3.05 mm, I =1.00 mm, p = 0.87 mm, q = 26.00 mm.
L: microstrip transmission line; S: microstrip step discontinuity; F:

four-port network.
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Fig. 6. I,S21[ of the two-port network shown in Fig. 5(a). — mea-

sured, –––– computed by this method, . . . . . . . computed by decom-
position of the branch line coupler.

questionable. In our computation, the branch line coupler

is treated as a whole. The one-port S parameters of four

modes, i.e., e –e, e–o, o–e, o–o (see Fig. 5(b)) are com-

puted first and the four-port S parameters are obtained by

the existing method [29]. After obtaining four-port S pa-

rameters, we calculated the two-port S parameters of the

circuit shown in Fig. 5(a). Fig. 6 shows the computed

results using the present method compared to measured

results and the results obtained by adopting the decompo-

sition of the branch line coupler. A general-purpose mi-

crostrip CAD program, developed by the authors [27] in

1985 using the microstrip waveguide model mode-match-

—____—-- I r___7°

o.z,~ ~
48 12 24 36 48

FREQUENCY IN GHz FREQUENCY IN GHz

Fig. 7. Computation results of the S parameters of a microstrip step

discontinuity. W,/If = 1.0, WI/H= 4.0, c,= 10.0, H= 0.25 mm.
— this method; –––– Jansen [11].

-51 I

-15

-25
I I

5 10 15

FREQUENCY IN GHz

Fig. 8. Computed and measured 1S21I of a microstrip gap discontinuity.

S’= 0.15 mm, W= 2.23, mm, H= 0.75 mm, E, = 2.86. — mea-

sured; –––– computed.

ing method [28], is applied to consider the microstrip

discontinuity effects (Fig. 5(c)).

The analysis of a microstrip step discontinuity up to

millimeter frequencies is shown in Fig. 7 compared to

results by Jansen.

Fig. 8 shows IS211of a microstrip gap discontinuity. One

of the reasons for the difference between the computed

and the measured results may be the neglect of the finite

thickness of the strip.

IV. CONCLUSIONS

A deterministic approach to the full-wave analysis of

discontinuities in MIC’S using the method of lines has

been proposed. This method is flexible for arbitrarily

shaped discontinuities in any quasi-planar configurations

and valid up to millimeter-wave frequencies. It provides

useful results with sufficient accuracy for practical applica-

tions. The derivation procedure can be easily extended to

the structures consisting of more strip layers and more

dielectric layers.
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