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Deterministic Approach to Full-Wave
Analysis of Discontinuities in MIC’s
Using the Method of Lines

ZHAOQING CHEN anp BAOXIN GAO

Abstract — A deterministic approach to the full-wave analysis of disconti-
nuities in MIC’s using the method of lines is described. Arbitrarily shaped
one-port and in-line two-port discontinuities in any quasi-planar configura-
tions can be analyzed by this “one step” method. Using the hybrid
homogeneous boundary conditions, this approach simplifies the calculation,
with ¢ and ¢" being discretized only in and near the discontinuity
regions. Mlustrative examples of S-parameter calculation are given. Com-
puted results are compared with measured data and with the published
results of other authors.

I. INTRODUCTION

CCURATE computation of the frequency-depen-

dent properties of the discontinuities in MIC’s (Fig.
1) is important for extending the applicability of existing
CAD tools to higher microwave frequencies and millime-
ter-wave frequencies.

At higher operating frequencies full-wave analysis is
more accurate than quasi-static analysis. Due to the com-
plexity of the problem, a rigorous numerical 3-D full-wave
approach has not yet been elaborated. In recent years,
some full-wave analyses of the discontinuities in MIC’s/
MMIC’s have been published [1]-[18]. A unified user-
oriented full-wave computation method for the analysis of
arbitrarily shaped discontinuities in any quasi-planar con-
figuration is an attractive subject.

The method of lines [19]-[25] is more flexible than other
methods. It avoids the choice of basis functions and the
relative convergence problem. It provides a simple means
for dealing with complex structures and was applied to
discontinuity problems by Worm et al. [21], [23], [24].
However, for nonperiodic discontinuity problems, if only
~ the Dirichlet and the Neumann homogeneous boundary
conditions are applied, ¥° and " must be discretized in
both the discontinuity region and the connected open/
short ended transmission line sections. The maximum of
the electrical length of the transmission line sections is 7,
so the number of discretization lines is very large.

Recently, the authors [26] presented an eigenvalue ap-
proach using the method of lines to discontinuity problems
in quasi-planar configurations by introducing the hybrid
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Fig. 1. Discontinuity in MIC shielded structure.

homogeneous boundary conditions. The approach requires
that ¢¢ and ¢* be discretized only in and near the discon-
tinuity regions, so it markedly reduces the computation
effort.

In this paper, we present a deterministic full-wave ap-
proach to the problem for the case of shielded structures.
The deterministic approach avoids solving the eigenvalue
equation, which requires many computation steps to find
the root. It is a “one-step” solution and is more suitable
for practical applications than the eigenvalue approach.

II. ANALYSIS

The method of lines combines the advantages of the
analytic and the discrete methods. The principles underly-
ing this method have been described by Worm et al.
[19]-[24]. The electromagnetic field in each layer of the
dielectric is described by two scalar potential functions ¢°
and Y™

E=v xv x(y2)/(joe)=v x(¥"2) (1)

H=v x(¥2)+v xv x(3"2)/(jop). ()
The functions ¢¢ and ¢/ are discretized in the x and the
z direction shown in Fig. 1 with nonequidistant mesh
Wldth hxi (=12, th)a €xi (l =12, Nex)’ hzi
(i=1,2,---,Ny,), e,; (i=1,2,--- N, ); then they will be
denoted by the matrices [¢¢] and [¢"], respectively. The
transformation of matrix notation into vector notation can
be expressed as follows:

_ [4llX][B] > [B] ®[4]X (3)
where = [Xy15 Xo1,7 075 X1y X125 X257 " %5 X oy X13, X3
;o X,,]7s ® denotes the Kronecker product [24]; and
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Fig. 2. Discretization of ¢ and ¢” for one-port discontinuity + ¢
lines, ® ¢ lines.

[A), [B], and [ X] are M X M, N X N, and M X N matri-
ces, respectively.

Fig. 2 shows the discretization of ¢ and ¢" lines in
one-port discontinuity (open end) structure. It is assumed
that only one propagation mode exists in the transmission
line connected to port 1 and that the plane 7) is so far
from the discontinuity region that the higher order modes
excited by the discontinuity will vanish at T;.

We take the incident wave as the impressed wave, de-
noted by ¢¢”, and the reflected wave as the excited wave,
denoted by ¥%”. According to transmission line theory,
near the plane 7] {7 ; can be expressed as

¢§,E=CI,E(x>y)e¢jﬁlz (4)

where B, is the propagation constant of the transmission
line at port 1.

At z=0, ¢ and Y satisfy the hybrid homogeneous
boundary conditions:

7
dz

=T JBC; z=F jBe ijﬁlal‘ﬁ, B
z=0

=4* 7.5 (5)

where A* and A~ are complex constants. The derivative
of [¢%"] and [¢%"*] with respect to z can be transformed to
matrix operation forms:

alys 1
el L tag il ore) )

5, (6)

with
1 0
[D5#] = [ 2] -1 [[r]
O -1 1

for Fig. 2 with E-W. at T;

(7)
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or
0
[D/F] = [r:*] 4 {[rs*]
0 S-1]
for Fig. 2 with MW. at T, (8)
r\/hﬂA T Tha 0
[ri2"] = e (9)
L 0 Thonhz
LE] _ Ten1 O
[re: ] 0 re:Ne: (10)
[9f 2] = (7.} "[ws sl [ " (11)
d zph, 1
L R e w
[(I)Ih,E]=[rhx] [11/1 E][rhz ]_1 (13)
a%lye 1
—[a}IZL]* zlef ] [0 ] (D F] [k 7]
1
= zler e F] [k (14)
*[y} 4] 1 R
iojlz—_)—"z‘f[q)lh,E”DzI.EH :,E] [rhIZJ

1
=z (o ] [DF] ] (15)

The second-order operators [D¢" %] and [D!1E] are
complex symmetric tridiagonal matrices. By means of the
Kronecker product it has been shown that the discretiza-
tion in the x and z directions is independent and that
operator equations for one direction have an obvious anal-
ogy in the other direction. Therefore, with the exception of
(9), equations (6)—(15) are the same as (5)—(14) in [22] but
are formulated for the z direction.

The transformations of the derivatives of [{§ ;] and
[} ;] with respect to the x direction are the same as those
in [22]. By the transformatlons[ C ) =T0719F (NTLE
and [V g]= [T,,x] Tl®f pNTHEL Helmholtz equations for
[¢¢ £] and [yt 7.r) can be transferrt*d to uncoupled differen-
tial equations:

sz;:Elk [Aexx]u [>\€1 5 ]kk k2 Ve =0
»* o\ PR A
(i=1,2,"';Nex;k=1329.”7Nez) (16)
szh A’.’XX] 123 [A}.l‘!{" E]
d;’zE’k +( [ 3 + e Kk +e k2| V. =0
(i=1.2,++, N3 k=1,2,---,N,,) (17)

where [T £] denotes the normalized eigenvector matrices
of [ DglE], 1AL £] denotes their eigenvalue diagonal matri-
ces, and [ThIzEL [A’fzﬁ’E]’ [T'exla [}texx]* [Thx]7 a'nd [}\’;cx] are
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defined in a similar way. We employ the subroutines in
EISPACK [30] to compute [T] and [A]. Using the method
proposed by Worm et al. [21], [22] we can obtain

(24%] (25T || 0| (B2
(2] (267 |l 7oe] B
for strip structures (18)
or
(7] (77 || B2e | |2
[752] (78] [l E5] 720
for slot structures  (19)
and then
LE rJzI'EJ _ ElF
N I L
or

(21)

[ YI’ E]red "‘“]’ E
X

FJ_ZI,E:I

L slot _JxI E slot
The details of deriving (18)—(21) can be found in [19]-[24].
In our approach [8/ #]= [T 5] D] E][T%E] are complex
matrices which retain quasi-diagonal properties of the ex-
isting representations [21], [22]. [, JJor [Z, ,] can be carried
out using only quasi-diagonal matrices. Obviously, the
large matrix storage requirement can be alleviated and the
computation time can be reduced. Sometimes we have to
suitably rearrange the columns of [T} ¥] or [T/ £] and the
corresponding [A; 7] in order to get a standard form of
the quasi-diagonal matrix 8 £].

Now we discuss the strip structures shown in Fig. 2. We
split up the strip region into two parts: transmission line
region A and discontinuity region B. The sum of the
number of ¢° and ¢* lines in region 4 should be larger
than that in region B. By rearranging the rows and the
columns of the matrix [ Z”>£], we obtain

[lel,E [leiE] jAI,E _ EAI,E
[Zzll, E [ZZIiE] JBLE| | EBLE
TBI.E

—_—r
JBLE::[jBLE} (23)

(22)

where
FALE
JALE _, J;
J_AI, E
X

LALE I BI.E
Ez

_ E;
EBLE - [EB[’E}_ (24)

The superposition of the impressed field and the excited
field must satisfy the tangential condition for the conduc-

FALE [

L AILE
Ex
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tor surface:

EAE=EA8 § EAPES] (25)
B0 = E4014 EA0P=0 (26)
so we have
28] (28] f] E} @)
[Zﬁ] [Z{‘;] JBE EBI

Since region A is a transmission line section connected to
port 1, JA' and J4' can be assigned according to the
results of the 2-D analysis [20], [22] of the transmission
line at port 1. In the z direction the factor e/ should be
taken into account. J?' and J?! are determined in such a
way that the electromagnetic field described by ¢%”" in
region A remains in the “incident” state, so the equations
EAT=0 and E/' =0 must be satisfied. In this way, the
equations are obtained as follows:

[ZL) AT+ [ 2] TP =0 (28)
(29)
(30)

(31)

o]

(28] 747+ [ 2] 7oe =
(241747 + [2] 7= E*
|28) 745 + [ 28] o5~ - B
and then
TP = —[zh) 2k ] o (32)
_ _ -1
7rE= (2] 2E] (28] -[25])
([Zh]-[25] 28] [ Zh]) 7

e AN AR

(33)
(34)

where [ ]7! denotes the Moore—Penrose generalized in-
verse matrix. The § parameter of the one-port can be
calculated by

Sy = 117/11Jr

M

+ _ Al
I'= ZJz Cxkey(1)
1=1

(35)
(36)

Ny

- AE
‘[1 = Z Jt exkl(t)
=1

(37)

where N, is the total number of ¢ lines on the conductor
strip at plane T}, and k(i) is the x-direction subscript of
the ith ¢¢ line on the conductor strip at T;.

Fig. 3 shows the discretization of y° and ¢ lines for an
in-line two-port discontinuity structure. To calculate S,
and S,,, we consider that there is no incident wave at port
2, so the boundary conditions of port 2 for both impressed
and excited fields are the same, ie., the reflect types.
Similar to the one-port treatment, the following results are
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Fig. 3. Discretization of ¢¢ and " for in-line two-port discontinuity.
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obtained:
W] & o
o | ST BTN =G (38)
z=0
7 g .
82 = ]Bze'1ﬁ202¢i, ENez — B_‘ib?, ENe:z
zZ=2Z3+a,
(39)
{ VezlG—h o rezl 0
\ Ter
7] i )
| O rezNez
[rhIZ] =[rhEZ]
_rhzl 0
- Thz(Nhz—1)

honne B Thonn:

(41)

-1_1 0
pro)=le]| TS|l @)
0 -1
S;; can be calculated in a way similar to that of the
one-port discontinuity case. For S,;, we have

L [Zia

= 43
21 Ji 1+ ZL1 ( )

where Z;; and Z,, are the characteristic impedances of
transmission lines at port 1 and port 2, respectively, based
on the current—power definition:

N

- BI BE .
12 - Z (JM2*N2+1+JM27N2+1) exkz(z)
=1

(44)

where M, denotes the number of ¢ lines in region B, N,
equals the number of ¥ lines on the conductor strip at T,
and k, (i) is the x-direction subscript of the ¢ line,
which is the ith on the conductor strip at T,.
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The equations for the slotline structures are dual to
those of strip structures. We use U instead of J. The
characteristic impedance Z, is based on the voltage—power
definition.

III. REsULTS

Based on the method described above, we have devel-
oped a computer program for calculating the S parameters
of arbitrarily shaped one-port and in-line two-port discon-
tinuities in quasi-planar configurations with three dielec-
tric layers and one conductor strip layer. The computa-
tions were performed on the ELXSI 6400 system. Another
version of the program with smaller array dimensions can
be run on the IBM PC/AT.

Since we assumed that only one propagation mode exists
at 7T, shown in Fig. 2 and at T3, T, shown in Fig. 3, the
locations of the above-mentioned planes 7, should be far
enough from the discontinuity. By applying principles for
the nonequidistant discretization [22], we can achieve this
condition without using an extremely large number of
discretization lines.

A finline inductive strip is analyzed by the even- and the
odd-mode method (Fig. 4). Our results are closer to the
measured results by Knorr et al. [4].

An example of a more complex structure is shown in
Figs. 5 and 6. It contains a branch line coupler. Four
branch lines are located close to each other. As Jansen [7]
pointed out, parasitic coupling and spurious parameters
are so strong that the usefulness of a decomposition to
four T junctions and four transmission line sections is
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four-port network.
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Fig. 6. |S,;| of the two-port network shown in Fig. 5(a).
sured, ———— computed by this method,
position of the branch line coupler.

mea-
------- computed by decom-

questionable. In our computation, the branch line coupler
is treated as a whole. The one-port S parameters of four
modes, i.e., e—e,e—0,0—¢e,0—0 (see Fig. 5(b)) are com-
puted first and the four-port § parameters are obtained by
the existing method [29]. After obtaining four-port S pa-
rameters, we calculated the two-port S parameters of the
circuit shown in Fig. 5(a). Fig. 6 shows the computed
results using the present method compared to measured
results and the results obtained by adopting the decompo-
sition of the branch line coupler. A general-purpose mi-
crostrip CAD program, developed by the authors [27] in
1985 using the microstrip waveguide model mode-match-
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Fig. 8. Computed and measured |S,;| of a microstrip gap discontinuity.
§=015 mm, W=223, mm, H=0.75 mm, ¢, =2.86. mea-
sured; ———~ computed.

ing method [28], is applied to consider the microstrip
discontinuity effects (Fig. 5(c)).

The analysis of a microstrip step discontinuity up to
millimeter frequencies is shown in Fig. 7 compared to
results by Jansen.

Fig. 8 shows |S,;| of a microstrip gap discontinuity. One
of the reasons for the difference between the computed
and the measured results may be the neglect of the finite
thickness of the strip.

IV. CoONCLUSIONS

A deterministic approach to the full-wave analysis of
discontinuities in MIC’s using the method of lines has
been proposed. This method is flexible for arbitrarily
shaped discontinuities in any quasi-planar configurations
and valid up to millimeter-wave frequencies. It provides
useful results with sufficient accuracy for practical applica-
tions. The derivation procedure can be easily extended to
the structures consisting of more strip layers and more
dielectric layers.
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